Tetrahedron Letters No. 8, pp. 309-316, 1962. Pergamon Press Ltd. Printed in Great Britain.

THE CONSTITUTIONS OF THE CUCURBITACINS
W.T. de Koch, P.R. Enslin and K.B. Norton, National Chemical Research Laboratory, South African Council for Scientific and Industrial Research, Pretoria
D.H.R. Barton and B. Sklarz Imperial College, London, S.W.7, U.K.

A.A. Bothner-By

The Mellon Institute, 4400 Fifth Avenue, Pittburgh 13, Pennsylvania

$$
\text { (Received } 30 \text { March 1962) }
$$

THE cucurbitacins are an interesting group of bitter principles found in the Cucurbitaceae. ${ }^{1}$ A constitution (I) was recently proposed ${ }^{2}$ for cucurbitacin E. The related cucurbitacin B may be represented as in (II, $R=$ side chain). Cucurbitacins B, D, E and I have all been correlated previously. ${ }^{3}$ The position of the ring C ketone group at C_{11} or C_{12} has not hitherto been established. We wish to present proof that the ketone is at C_{11}, to provide independent evidence for the constitution of cucurbitacin B and to propose constitutions for the biogenetically related ${ }^{l}$ cucurbitaeins A and C.
${ }^{1}$ P.R. Enslin, J.M. Hugo, K.B. Norton and D.E.A. Rivett, J. Chem. Soc. 4779 (1960); and references there cited.
${ }^{2}$ D. Lavie, Y. Shvo, O.R. Gottlieb and E. Glotter, Tetrahedron Letters No. 18, 615 (1961).

3 D. Lavie, Y. Shvo, D. Willmer, P.R. Enslin, J.M. Hugo and K.B. Norton, Chem. and Ind. 951 (1959).

The A-nor-ketone ${ }^{4}$ (III) from cucurbitacin B affords the tetraketone (IV), m.p. $253-258^{\circ},[a]_{D}+98^{\circ}, \lambda_{\max } 243 \mathrm{mu}(\varepsilon=11,400)$, on chromic acid oxidation. The latter was rapidly autoxidised at room temperature in alkaline solution to the diene-dione ${ }^{5}$ (v), m.p. 176-179,$[a]_{D}+377^{\circ}$, $\lambda_{\max } 284 \mathrm{mu}(\varepsilon=22,800)$. The diene-dione character of this compound was confirmed by zinc dust reduction at room temperature (formation of the analogue of (VIII) (see below), m.p. 186-191 $,[a]_{D}+190^{\circ}, \lambda_{\max }$ $284 \mathrm{~m} /(\boldsymbol{E}=1140)$) and reoxidation back to starting material. A similar series of compcunds was prepared containing the 16(17)-ethylenic linkage. The diene-dione (V; 16(17)-unsaturated) had m.p. 210-211,$[a]_{D}+438^{\circ}$, $\lambda \lambda_{\max } 239$ anc $284 \mathrm{~m} \mathrm{\mu}(\varepsilon=13,400$ and 21,300 respectively $)$.

Oxidation of cucurbitacin B diacetate with chromic acid affords ${ }^{3}, 6$ cucurbitone $B(V I)$. With methanolic hydrochloric acid this is converted into another djene-dione ${ }^{7}$ (VII), m.p. 236-237 $,[\alpha]_{D}+506^{\circ}, \lambda \lambda_{\max }$ 238 and $288 \mathrm{~m} \mathrm{\mu}(\boldsymbol{E}=12,800$ and 19,800 respectively). Reduction at room temperature with zinc dust and acetic acid to (VIII), m.p. 222-2230, $[a]_{D}+145^{\circ}, \lambda_{\max } 238 \mathrm{mu}(\varepsilon=9,400)$, from which the diene-dione could be regenerated by alkaline autoxidation, confirmed its formulation.

Proof of "he position of the unreactive ll-ketone was secured by investigations with cucurbitacins Λ^{1} and C^{8}. The nuslear magnetio reson-
${ }^{4}$ D. Lavie and Y. Shvo, Chem. and Ind. 403 (1960).
5 This compound is probably identical with a substance obtained by a different rodte by Lavie and his collaborators. ${ }^{2}$
${ }^{6}$ W. Schlegel, A. Melera and C.R. Noller, J. Org. Chem. 26, 1206 (1961).
7 This compound was first prepared by Professor C.R. Noller and his collaborators. We thank Professor Noller cordially for a reference specimen. For analogous rearrangements see R.L. Clarke, J. Amer. Chem. Soc. 82, 4629 (1960).
8 P.R. Enslin, J.M. Hugo, K.B. Norton and D.E.A. Rivett, J. Chem. Soc. 4787 (1960).
ance spectra of derivatives (see further below) consistentiy showed only four quaternary methyl groups, whilst acetylated derivatives had a quaternary acetoxymethyl group. Since cucurbitacin A has one more acetylateable hydroxyl group than B, the substitution of this hydroxyl group into one of the (five) quaternary nuclear methyl g oups of cucurbitacin B was inferred.

The constitution (IX, $R=$ side chain) for cucurbitacin A was deduced from the following evidence. Cucurbitone $A^{l}(X)$ was enol-acetylated with sodium acetate-acetic anhydride under reflux to the enol-acetate (XI), m.p. $88-90^{\circ},[a]_{D}+594^{\circ}, \lambda \lambda_{\max } 238$ and $357 \mathrm{~mL}(\varepsilon=14,400$ and 9,200 respectively). With 0.1% aqueous (60%) perchloric acid in acetic acid at room temperature this furnished another diene-dione (XII), m.p. 223-224 ${ }^{\circ}$, $[a]_{D}+487^{\circ}, \lambda \lambda_{\max } 238$ and $289 m_{\mu}(\varepsilon=13,600$ and 19,600 respectively $)$, very similar in its properties to the diene-dione (VII) from cucurbitone B. Now when dihydrocucurbitone A^{l} was treated with aqueous alkali under nitrogen it furnished formaldehyde and a nor-compound (XIV), m.p. 242 $247^{\circ},[\alpha]_{\mathrm{D}}+187^{\circ}, \lambda_{\max } 240 \mathrm{mu}(\varepsilon=9,400)$ which retained four quaternary methyl groups in its nuclear magnetic resonance spectrum. The ketone in ring C, not that in ring A, must therefore be responsible for the reversed aldol reaction. The diene-dione (XII) behaved similarly and with dilute alkall afforded formaldehyde and the phenolic ketone (XIII), m.p. 248-252 ${ }^{\circ}$, $[a]_{D}-31^{\circ}, \lambda \lambda_{\max } 220,232,270$ (shoulder) and $337 \mathrm{~m} \mathrm{\mu}(\varepsilon=16,300$, $14,800,5,700$ and 2,300 respectively).

Cucurbitacin C^{8} has three acetylateable hydroxyl groups, four nuclear quaternary methyl groups and an inert ketone group in ring C. Cucurbitacin C is formulated as (XV; $R=$ side chain) on the basis of the following evidence. Acetylated derivatives show the nuclear magnetic resonance bands for a quaternary acetoxymethyl group. This must be a- to a ketone group because cucurbitacin C, like A but unlike B, readily affords formaldehyde with lN-ethanolic potassium hydroxide at room temperature overnight. Hexa-

I

III

IV

II

V

VI

VII

VIII

IX

X

XII

XIV

XV

XVI

XVII

XVIII

XIX

XX

XXI
norcucurbitacin C^{8} (XVI; $R=O H$) and the derived 16-desoxyketone (XVI; R $=H$) both losi formaldehyde on treatment with base to give heptanor-compounds, (XVII), m.p. $<52-258^{\circ},[\alpha]_{D}-191^{\circ}, \lambda_{\max } 239 \operatorname{mu}(\varepsilon=9,200)$ and (XVII; 16(17)-saturated), m.p. $197-201^{\circ},[a]_{\mathrm{D}}-75^{\circ}$ respectively). Chromic acid oxidatior gave the triketones (XVIII), m.p. $247-250^{\circ},[a]_{D}-243^{\circ}$, $\lambda_{\max } 239 \mathrm{~m} \mu(\varepsilon=9,400)$ and (XVIII; 16(17)-saturated), m.p. $238-243^{\circ}$, $[a]_{D}-116^{\circ}$. All these compounds had four quaternary methyl groups (nuclear magnetic resonance spectra) and hence the ketone responsible for the loss of fcrmaldehyde must be in ring C (at C_{11}). Compounds (XVI; $R=$ H), (XVII) and (XVII, 16(17)-saturated) gave weak Zimmerman tests. Compounds (XVIII) and (XVIII; 16(17-saturated) gave strongly positive tests. The secondary hydroxyl group must therefore ${ }^{y}$ be at C_{3}.

Oxidation of compounds (XVI; $R=H$) (XVI; $R=H$; 16(17)-unsaturated) gave triketo-aldehydes (XIX), m.p. 205-207,$[\alpha]_{D}-2^{\circ}$ (c 1.0), $\lambda_{\max }$ $239 \mathrm{mu}(\varepsilon=9,300)$ and (XIX; 16(17)-saturated), m.p. 202-206 ${ }^{\circ},[\mathrm{Ca}]_{\mathrm{D}}$ $+100^{\circ}$. Althcugh these compounds could not be enolised under acidic or enol-acetylating conditions (XIX) readily rearranged in alkaline solution to give two isomeric enols, (XX) and (XXI). These compounds had m.p. 214 -$219^{\circ},[a]_{D}-247^{\circ}, \lambda \lambda_{\max } 241$ and $286 \mathrm{~m} \mathrm{\mu}(\varepsilon=10,600$ and 8,700 respectively) and m.p. $269-275^{\circ},[a]_{D}-245^{\circ}, \lambda \lambda_{\text {max }} 242$ and 277 mu ($\mathcal{E}=10,900$ and 11,200 respectively) and showed the appropriate changes in spectra with alkali. This intramolecular formyl transfer is only possible if tre ketone group in ring C be at C_{11} and if the B / C ring fusion be eis. We shall discuss the full stereochemistry of the cucurbitacins later.

All ultraviolet spectra are in ethanol, all rotations in chloroform with $C=$ apprcx. 1%. All compounds had the appropriate analytical data

[^0]and give infrared spectra in full accord with the assigned structures.
The nuclear magnetic resonance results have been briefly referred to above. ${ }^{10}$ We shall give fuil details later but the following is a brief exposition of the more important features of the spectra.

Proton magnetic resonance spectra at $60 \mathrm{mc} / \mathrm{sec}$ were obtained with a Varian DP-60 spectrometer on samples in solution in degassed CDCl_{3} containing $1 / 2 \%$ tetramethylsilane as a reference. Chemical shifts are reported on Tiers' ${ }^{1 l}$ 'T-scale.' The most significant first-order assignments in a number of spectra are summarized below: ${ }^{12}$

A-series
Cucurbitone $A(X): \quad$ olefinic proton (c-6) $-\tau=3.75$; $2 x$ secondary ester protons - m. , $T=4.37, \mathrm{~m} ., \tau=4.50 ;-\mathrm{CH}_{2}-\mathrm{OAc}-$ n.e.ч., $\tau=5.59$, $6.02,|\mathrm{~J}|=11.0 \mathrm{cps} ;-\mathrm{COCH}_{3}+3 \mathrm{x}-0 \mathrm{Ac}-\tau=7.83,7.87,8.02$ and 8.10 .

Enol-acetate (XI): olefinic protons (on C-16) - m., $\tau=3.20$, (on $\mathrm{c}-1)-\mathrm{t} ., \tau=4.10$, (on $\mathrm{C}-3$) - d., $\tau=4.35$, (on $\mathrm{c}-6$) $-\mathrm{d} ., \tau=3.75$, $\left|J_{1}, 3\right| \sim\left|J_{3,6}\right| \sim 2.0 \mathrm{cps} ;-\mathrm{CH}_{2} \mathrm{OAc}-$ n.e.q., $\tau=5.49,6.04,|\mathrm{~J}|=10.8 \mathrm{cps} ;$ $-\mathrm{COCH}_{3}+2 \mathrm{x}-\mathrm{OAC}-T=7.70,7.83,8.02 ; 4 \mathrm{x}$ quaternary methyl groups $-\tau=8.66,8.71,8.89($ area $=6 \mathrm{H})$.

Dienedione (XII): olefinic protons (on C-16) -m., $T=3.20$, (on $C-1$ and $\mathrm{C}-6$) - n.e.q., $T=3.62,3.97,|\mathrm{~J}|=2.0 \mathrm{cps} ;-\mathrm{CH}_{2} \mathrm{OAc}-$ n.e.q., $T=$ $5.54,5.88,|\mathrm{~J}|=11.2 \mathrm{cps} ;-\mathrm{CH}_{2}(\mathrm{C}-3)-\tau=7.50 ;-\mathrm{COCH}_{3}-\tau=7.68 ;$

[^1]-OAC $-\boldsymbol{T}=7.39 ; 4 \mathrm{x}$ quaternary methyl groups $-\boldsymbol{T}=8.62,8.74,8.89$ (area $=6 \mathrm{H})$.

C - series
Cucurbitone C: olefinic proton (C-6) - d., $T=3.73,\left|J_{6}, 10\right|=2.0 \mathrm{cps}$; secondary este: proton $(C-16)-t ., \tau=4.32,\left|J_{15,16}\right|=7.2 \mathrm{cps} ;$ secondary ester proton ($\mathrm{c}-3$) - m., $\boldsymbol{T}=5.35 ;-\mathrm{CH}_{2} \mathrm{OAc}-\mathrm{n} . \mathrm{e} . \mathrm{q} ., \boldsymbol{T}=5.52,5.98,|\mathrm{~J}|=$ $11.4 \mathrm{cps} ;-\mathrm{COCH}_{3}+3 \mathrm{x}-\mathrm{OAc}-\tau=7.82,7.92,8.00$ and $8.08 ; 4 \mathrm{x}$ quaternary methyl groups: $\boldsymbol{T}=8.72,8.83$ (area $=6 \mathrm{H}$) , 9.13 .

Triketomonoaldehyde (XIX): aldehyde proton $-m .,^{13} \boldsymbol{T}=0.10$; olefinic proton (c-16) - t., $\boldsymbol{T}=3.25,|\mathrm{~J}|=2.5 \mathrm{cps} ;$ olefinic proton $(\mathrm{C}-6)-\mathrm{m} .$, $\boldsymbol{\tau}=4.20 ;-\mathrm{COCH}_{3}-\boldsymbol{\tau}=7.69 ; 4 \mathrm{x}$ quaternary methyl groups $-\boldsymbol{T}=8.75$, 8.79, 8.89 and 9.02.

Anhydroheptanorcucurbitacin C (XVII): olefinic proton (C-16) - t., $=3.20,\left|J_{15}, 1_{13}\right|=2.5 \mathrm{cps} ;$ olefintc proton $(\mathrm{C}-6)-\mathrm{m} ., \tau=4.45 ;-\mathrm{COCH}_{3}$ - $\boldsymbol{\tau}=7.68 ; \quad+\mathrm{x}$ quaternary methyl Eroups $-\boldsymbol{\tau}=8.89,8.93,8.97$ and 9.08 .

Triketone (XVIII): olefinic proton ($\mathrm{C}-16$) - t., $\tau=3.20,\left|\mathrm{~J}_{15,16}\right|=$ $2.4 \mathrm{cps} ;$ olefinic proton (c-6) - m., $\boldsymbol{T}=4.43 ;-\mathrm{COCH}_{3}-\boldsymbol{T}=7.72 ; \quad 4 \mathrm{x}$ quaternary metiyl groups $-T=8.72,8.81,8.88$ and 9.08 .

13 Small splitting, probably long range: cf.
D.R. Davis, R.P. Lutz, and J.D. Roberts, J. Am. Chem. Soc. 83, 246 (1961).

[^0]: 9 D.H.R. Barton and P. de Mayo, J. Chem. Soc. 887 (1954).

[^1]: 10 We thank cordially Dr. J.W. Lown and Mr. R.G. Foster (Imperial College) for some preliminary nuclear magnetic resonance data.

 11 G.V.D. Tiers, J. Phys. Chem. 62, 1151 (1958).
 12 The following abbreviations are used: n.e.q. = non-equivalence quartet; m. = unresolved or not completely analyzed multiplet; d. = doublet; t. = triplet.

